
Spatio-Temporal Linear Expansions for Repolarization Analysis

S Olmos1, JP Mart́ınez1, L Sörnmo2

1Electronics Engineering and Communications Dep., University of Zaragoza, Spain
2Dep. of Electroscience, Lund University, Lund, Sweden

Abstract

In this work we propose a multichannel signal model
based on linear expansions to analyze the cardiac
repolarization. Our hypothesis is that a joint spatio-
temporal signal description which takes into account both
temporal and spatial features provide a more compact
signal representation, i.e. the signal energy is packed into
a smaller number of coefficients. In this work we also deal
with the problem of estimating optimal basis functions in
two different situations: when no information of the noise
source is available and when the noise statistics is known
or estimated from especific signals or intervals, like the TP
segment.

1. Introduction
Myocardial ischemia is reflected in the ECG by

amplitude changes in the ST segment and the T wave.
The conventional ST level measurement (typically obtained
at J+60 ms) represents a local measurement which
unfortunately is vulnerable to various noise sources such as
baseline wander and muscle; in addition, the measurement
is rendered even more difficult due to heart rate related
repolarization changes. In order to obtain more robust
measurements, additional information can be introduced
by making use of information from previous beats. For
example, signal averaging [1] and its many variants
relies on the observation that ischemia-induced beat-to-beat
changes in ECG morphology are relatively slow.

Another approach is to analyze the complete repolariza-
tion waveform (STT complex) by means of linear expan-
sions to get a global characterization of the repolarization
waveform in each lead [2]. A desired property of the
basis functions is that they should characterize the relevant
features in a small subspace. Then, a few subset of
expansion coefficients will characterize the dominant signal
waveform. The trends defined by the subset of expansion
coefficients reflect the main beat-to-beat evolution of
repolarization changes, in the same way as the ST trends.

In this study we explore the spatial information available
in multichannel ECG recordings for use in repolarization
analysis. The repolarization waveforms from all leads are
jointly analyzed by a truncated linear expansion model

where the basis functions are matrices. Our hypothesis
is that multichannel expansions may achieve a better
packing of the signal energy than single-channel (temporal)
expansions, taking into account the joint spatio-temporal
information of the repolarization process.

Linear expansions is a well-known technique for signal
analysis and modelling. It is based on the decomposition of
the signal as a linear combination of simple and elementary
basis functions which define a new signal representation
domain [3]. The selection of the domain is a key factor
and should be done according to the properties of the
analyzed signal and the application. The optimal (in the
mean squared error sense) linear and unitary transform for
signal coding is the Karhunen-Loève transform (KLT) [4].
This transformation is data-dependent and it is estimated
from a data training set. Two different kinds of training sets
can be used for ECG analysis: a unique training set formed
by a large number of signals containing a wide range of
waveforms, or smaller patient-specific training sets. The
latter are often much more homogeneous, providing a better
energy packing performance. However, if the training
signals are heavily contaminated by noise and only a small
number of occurrences are available, the KL basis functions
may be greatly affected by noise. This may be the case of
exercise test recordings.

The aim of this work is twofold. Firstly, to introduce
a multichannel signal model based on linear expansions
which gives a joint spatio-temporal description of the
signal. Secondly, to define a procedure to estimate optimal
basis functions from a learning set of signals, considering
two situations: when there is no available information from
the noise source (or the observed signals have a good signal-
to-noise ratio, SNR) and when information of the noise
source is available.

2. Methods

2.1. Multichannel signal model

The information conveyed by a multichannel signal can
be represented by a matrixD∈RN×L,N being the number
of samples andL the number of sensors. The signalD
can be decomposed as a linear combination ofN × L
linearly independent spatio-temporal functions (elementary



matrices)Bij

D =
N∑
i=1

L∑
j=1

wij Bij . (1)

The linear coefficients,wij , give information about the
strength of the contribution of every functionBij in the
signal. EachBij carries spatial as well as temporal
characteristics of the signal.

As these two characterstics are often decoupled, we can
assume that the basis functionsBij are separable (rank-one
matrices)

Bij = ti sTj , (2)

where the temporal and spatial elementary vectorsti and
sj are thei-th and j-th column of two matrices denoted
respectively byT and S. The only restriction for these
matrices is that they must be full rank. The linear
expansion (1) can then be written in matrix form as

D = T W ST , (3)

whereT ∈ RN×N contains the temporal information of the
basis functions,W is the linear coefficient matrix formed
by wij , and S ∈ R

L×L contains the spatial information
of the basis functions. The particular case of channel-
by-channel signal expansion can be obtained from (3) by
settingS=I.

Truncated expansions are usually needed in several
applications, such as data compression, feature extraction or
filtering and can be interpreted as a restriction of the signal
to a given subspace. Truncation in the linear model (3)
is achieved by selectingp < N basis functions fromT
and/orq < L basis functions fromS yielding the model
D = Tp W STq , where the columns ofTp andSq are the
truncated basis functions. For simplicity, the subscriptsp
andq will be dropped in the rest of the paper.

2.2. KLT of noiseless multichannel signals

The KLT basis functions are given by the dominant
eigenvectors of the signal covariance matrix. However,
several limitations make the application of the KLT
difficult: it must be defined for each signal set, the
computation of the basis functions is intensive, and no fast
transformation algorithms can be easily defined because
of the lack of structure in the basis functions. The last
two limitations motivate lower-complexity approximations
to the optimal transform, especially when long signals are
analyzed, such as multichannel signals.

2.2.1 Global optimum.
The optimal 2D-KLT can be obtained by representing

data matrices as piled vectors. The data matrixD ∈ RN×L
can be represented by

d̃ ≡ vec (D) =
[
dT1 dT2 · · ·dTL

]T
, (4)

where di are the columns ofD and vec (·) denotes the
matrix-to-vector mapping [5]. The optimal basis matrices
are given by the dominant eigenvectors of theNL×NL
correlation matrixRd = E

{
d̃d̃T

}
[3, 4]. Finally, the

2D-basis functionsBij are the vector-to-matrix mapping of
each eigenvector.

2.2.2 KLT of signals with separable autocorrelation

If the observed signalD has a separable autocorrelation
function, i.e.,

E {dij dkl} = rtd (i, k) rsd (j, l) , (5)

the correlation matrix can be written as the Kronecker
product

R = Rt ⊗Rs (6)

whereRt andRs denote theN ×N andL×L temporal
and spatial covariance matrices respectively. When the
assumption (6) holds, the eigenvectors ofR (KLT basis
functions) can be computed as the outer product of
the eigenvectors ofRt and Rs [5, p. 423]. Now,
two eigenproblems must be solved to compute the basis
functions with a total complexityO

(
N3 + L3

)
, which is

smaller than in the previous case,O
(
N3L3

)
.

In addition, the basis matrices have a structure (separable
matrices) which can be used to reduce the complexity
to compute each transform coefficient fromO (NL) to
O (N + L).

When the assumption (6) does not hold, this trans-
formation can be understood as an approximation to the
optimal KLT with a lower computational complexity and
with a lower energy packing peformance because each
basis matrix is a rank-one approximation to the optimal
eigenvectors. When the assumption (6) holds, both
transformations are identical.

2.3. Optimal expansions for noisy signals

We consider now the problem of finding optimal linear
reduced rank approximations when the noise statistics is
known a priori (or estimated from specific time intervals,
such as the TP interval, or specific channels).

The observed signal1, x = d + n is composed of
two terms: the desired signald with correlation matrix
Rd and an uncorrelated noisen which is assumed to be
stationary (in the temporal domain) and with correlation
matrixRn. The problem is to find the optimal reduced rank
approximation of the observed signal which minimizes the
MSE between the desired signald and its approximation̂d.
Figure 1 illustrates this problem, whereA ∈ Rp×N andB ∈
R
N×p are reduced rank matrices withp≤N . Note that no

constraints are applied toA andB, such as orthogonality.
1Vector notation is used to simplify expressions. For multichannel

signals, the matrix-to-vector mapping,vec (·) must first be used.
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Figure 1. Linear reduced rank approximation of noisy
signals.

The cost function can be written as

J = E

{∥∥∥d− d̂
∥∥∥2
}

= tr {Rd}+

tr
{
BA (Rd + Rn) ATBT

}
− 2 tr {BARd} .(7)

Differentiation yields the equations

A =
(
BTB

)−1
BTRd (Rd + Rn)−1 (8)

B = RdAT
[
A (Rd + Rn) AT

]−1
. (9)

The reduced rank approximation operator is then given by

BA = RdAT
[
A (Rd + Rn) AT

]−1
A (10)

In the case of full-rank decompositions (square matrices
B andA), BA is equivalent to the full-rank Wiener filter
because

BA = Rd (Rd + Rn)−1 (11)

The minimum cost function is obtained by using (8)
and (9) in (7), which, after some algebraic manipulations,
can be written as

Jmin = tr {Rd} − tr
{

WTRd (Rd + Rn)−1 RdW
}
, (12)

whereW = B
(
BTB

)−1/2
. If complete expansions are

used,B is aN×N full rank matrix, andW is unitary. If
the expansion is truncated, thenA andB are nonsquare, but
W still has orthogonal columns. To find the optimal basis

functions the termtr
{

WTRd (Rd + Rn)−1 RdW
}

in

(12) must be maximized with the orthogonality restriction
on W. Again, the solution is given by the dominant
eigenvectors, but now of the matrixRd (Rd + Rn)−1 Rd.

It may be noted that the optimal reduced rank approx-
imation for noisy signals considers statistical information
from both sources (signal and noise), in the same way as
the Wiener filter does. More specifically, the same solution
is obtained by the classical KLT when the training set is
prefiltered with the Wiener filter.

In actual ECG recordings, the noise covariance matrix
can be estimated from an interval with essentially no
electrical activity of the heart, such as the TP segment,
assuming that noise statistics is similar from the STT
complex to the TP segment.

3. Materials and methods setup
ECG recordings from 114 non-selected subjects referred

for myocardial scintigraphy were used in this work. The
ECG signals were acquired during rest for five minutes
using a standard 12 lead configuration, sampling rate of
1 kHz and amplitude resolution of 0.6µV. Preprocessing
analysis included removal of baseline wander, QRS
detection and classification, selection of normal beats and
finally STT complex segmentation to a fixed distance of the
QRS fiducial point. A total of 37246 heartbeats were used
in the training set. Before estimation of temporal and spatial
covariance matrices, the STT data matrices were energy
normalized in order to give the same representation strength
to each complex.

Temporal and spatial noise covariance matricesRt
n and

Rs
n were estimated from the TP segment after highpass

filtering for detrending purposes.
Three different implementations of the KLT were used to

illustrate the benefits of the joint spatio-temporal analysis:
• global KLT of long-piled vectors̃x as in section 2.2.1,
(denoted as 2-D KLT). The number of basis functions can
be any integer number1≤ i≤NL. The length of the basis
functions isNL samples.
• KLT assuming separability with rank-one basis functions
as in section 2.2.2 (denoted as ST-KLT). The number of
basis functions is the product of two integer numbersi=p q
where1 ≤ p ≤N and1 ≤ q ≤ L. The basis functions are
given byN + L values.
• channel-by-channel KLT (denoted as 1D-KLT) where
the matrix transformationT is formed by the dominant
eigenvectors ofRt

x and S = I. As as consequence,
the number of coefficients is a multiple of the number of
channels,L = 9 in our case. The length of the basis
functions isN samples.

4. Results
The signal energy distribution in the training set is

reflected in the eigenvalues of the signal covariance
matrix. Figure 2 illustrates the percentage of signal
energy represented by truncated expansions when the
training set is formed by all subjects. 2D-KLT and ST-
TKL get similar energy packing performance, suggesting
that the dominant waveform of the STT complex can
be accurately represented by a small subset of separable
matrices. However, the computational complexity of the
ST-KLT is much lower. In contrast, the energy packing
peformance of the 1D-KLT is much lower because the inter-
channel correlation is not considered.

The number of basis functions is a useful performance
measure for some rank reduction applications like feature
extraction or filtering, but not for others such as coding. A
better performance measure for coding would be the date
rate (measured on bits per second) of the coded signal. In
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Figure 2. Energy packing property in a big training set.
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Figure 3. Energy packing property in a small training set.

that case, the side-information needed for coding the basis
functions can be relevant.

If the training set is formed by only one subject (404
heartbeats), a much better energy packing is obtained due
to the higher homogeneity of the training set (see Fig. 3).

Noisy simulated ECG signals were generated by adding
noise to actual ECG recordings with a SNR of 10 dB.
Noise was obtained by filtering Gaussian white noise in
order to get the covariance matrices estimated from the TP
segment. Figure 4 illustrates one example of the noise effect
in the estimation of the basis functions when a small and
noisy training set is used (150 STT complexes). The third
dominant temporal eigenvector is presented as obtained by
KLT of the clean signal (as a reference), KLT of the noisy
signal and the optimal expansion of noisy signals. For this
homogeneous training set, the signal subspace is reduced
to the very few eigenvectors (as reflected in the eigenvalues
diagram). Figure 5 illustrates the SNR of each eigenvector
(in dB), showing that the dominant signal subspace is
much better estimated when the noise source information
is included in the expansion estimation.

5. Conclusions
Multichannel linear expansions provide a tool for joint

spatio-temporal repolarization waveform analysis. The
problem of estimation of multichannel optimal basis
functions, in the mean squared error sense, was considered.
ST-KLT provides an energy packing performance very
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Figure 4. First dominant temporal eigenvector. Note that
the two solid lines are overlaid.
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Figure 5. Noise effect on each dominant eigenvector.

close to the optimal 2D-KLT with a much lower complexity.
A priori information of the noise source, when available,
makes the estimation of the basis functions much more
robust.
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